Arithmetic of hyperelliptic curves over local fields

T. Dokchitser, V. Dokchitser, C. Maistret, A. Morgan
University of Bristol/King's College London

September 5, 2017

Setup

$p \neq 2$ prime;
K / \mathbb{Q}_{p} finite extension;
C / K a hyperelliptic curve of genus g,

$$
C: \quad y^{2}=f(x) \quad=c \prod_{r \in R}(x-r) .
$$

For purposes of the presentation assume that

- $\operatorname{deg}(f)=2 g+1$ or $2 g+2 \neq 1,2,4$
- $f(x) \in \mathcal{O}_{K}[x], c \in \mathcal{O}_{K}^{\times}$and $f(x) \bmod \pi_{K}$ is not of the form $(x-z)^{n}, \quad\left(x-z_{1}\right)^{n}\left(x-z_{2}\right)^{m}, \quad\left(x-z_{1}\right)\left(x-z_{2}\right)\left(x-z_{3}\right)^{n}$ or $h(x)^{2}$.

Cluster

A cluster \mathfrak{s} is a non-empty subset of R cut out by a p-adic disc:

$$
\mathfrak{s}=R \cap \operatorname{Disc}\left(z_{\mathfrak{s}}, d\right)=\left\{r \in R \mid v\left(r-z_{\mathfrak{s}}\right) \geq d\right\}, \quad \text { for some } z_{\mathfrak{s}} \in \overline{\mathbb{Q}}_{p}, d \in \mathbb{Q} .
$$

Depth

The depth of \mathfrak{s} is

$$
d_{\mathfrak{s}}=\min _{r, r^{\prime} \in \mathfrak{s}} v\left(r-r^{\prime}\right)
$$

child/parent
If $\mathfrak{s}^{\prime} \subsetneq \mathfrak{s}$ is a maximal subcluster, we call \mathfrak{s}^{\prime} the child of \mathfrak{s} and \mathfrak{s} the parent of \mathfrak{s}^{\prime}.

$\mathfrak{s}_{\text {odd }}$

For a cluster \mathfrak{s} we write $\mathfrak{s}_{\text {odd }}$ for the set of its children that have odd size.

Theorem(Semistability criterion)

The curve C / K is semistable if and only if the following hold:
(i) $K(R) / K$ has ramification degree at most 2 ,
(ii) Every cluster of size ≥ 2 is inertia invariant,
(iii) Every cluster \mathfrak{s} of size ≥ 3 has $d_{\mathfrak{s}} \in \mathbb{Z}$ and

$$
\nu_{\mathfrak{s}}=|\mathfrak{s}| d_{\mathfrak{s}}+\sum_{r \notin \mathfrak{s}} v\left(r_{0}-r\right) \in 2 \mathbb{Z} \quad \text { for any } r_{0} \in \mathfrak{s}
$$

Example $(p \neq 3)$

$$
y^{2}=(x-1)\left(x-1+p^{2}\right)\left(x-1-p^{2}\right) \cdot(x-2) \cdot x\left(x-p^{3}\right)
$$

Theorem(Special fiber of the minimal regular model $\bar{C}_{\text {min }}$)

Suppose that C / K is semistable. Then $\bar{C}_{\text {min }}$ is given by

- an (explicit) curve $\Gamma_{\mathfrak{s}}$ for each cluster \mathfrak{s} of size ≥ 3;
genus g_{s} where $\left|\xi_{\text {sodd }}\right|=2 g_{s}+1$ or $2 g_{s}+2$;
Γ_{s} is a union of two $\mathbb{P}^{1} s$ if $\mathfrak{s}_{\text {odd }}$ is empty;
- $\mathfrak{t c h i l d}$ of \mathfrak{s} with $|\mathfrak{t}| \geq 3$ odd - a chain of $\mathbb{P}^{1}{ }_{s}$ from $\Gamma_{\mathfrak{s}}$ to $\Gamma_{\mathfrak{t}}$ of length $\frac{d_{t}-d_{s}}{2}-1$,
- \mathfrak{t} child of \mathfrak{s} with $|\mathfrak{t}| \geq 3$ even - two chains of $\mathbb{P}^{1} \mathfrak{s}$ from $\Gamma_{\mathfrak{s}}$ to $\Gamma_{\mathfrak{t}}$ of length $d_{\mathfrak{t}}-d_{\mathfrak{s}}-1$,
- $\mathfrak{t c h i l d}$ of \mathfrak{s} with $|\mathfrak{t}|=2 \quad$ - a chain of $\mathbb{P}^{1} s$ from $\Gamma_{\mathfrak{s}}$ to itself of length $2\left(d_{\mathfrak{t}}-d_{\mathfrak{s}}\right)-1$.

Example: $C: y^{2}=(x-1)\left(x-1+p^{2}\right)\left(x-1-p^{2}\right) \cdot(x-2) \cdot x\left(x-p^{3}\right)$

Consequences for semistable C/K

- The homology of the dual graph Υ_{C} of $\bar{C}_{m i n}$ is

$$
H_{1}\left(\Upsilon_{C}, \mathbb{Z}\right)=\mathbb{Z}^{|A|}
$$

where A is the set of clusters $\mathfrak{s} \neq R$ with $|\mathfrak{s}|$ even and $\left|\mathfrak{s}_{\text {odd }}\right| \geq 1$. Frobenius acts as an (explicit) signed permutation, and there is an explicit formula for the intersection pairing.

- A formula for the Tamagawa number of the Jacobian (A. Betts).
- A criterion for whether $C(K)=\emptyset$ for p sufficiently large.
- A criterion for whether $C(K)$ is deficient.

Theorem: ℓ-adic representation for $\ell \neq p$
As I_{K}-representations

$$
\begin{aligned}
& H_{e ́ t}^{1}\left(C / \bar{K}, \mathbb{Q}_{\ell}\right) \cong H_{a b}^{1} \oplus\left(H_{t}^{1} \otimes S p(2)\right), \quad \text { with } \\
& H_{a b}^{1}=\bigoplus_{\mathfrak{s}:|\mathfrak{s}| \geq 3,\left|\mathfrak{s}_{\text {odd }}\right| \geq 1} \operatorname{Ind}_{\mathrm{Stab}(\mathfrak{s})}^{I_{K}} V_{\mathfrak{s}}, \quad H_{t}^{1}=\bigoplus_{\mathfrak{s} \neq R:|\mathfrak{s}|} \bigoplus_{\text {even, }\left|\mathfrak{s}_{\text {odd }}\right| \geq 1} \operatorname{Ind}_{\mathrm{Stab}(\mathfrak{s})}^{I_{\mathfrak{s}}} \epsilon_{\mathfrak{s}},
\end{aligned}
$$

where $V_{\mathfrak{s}}=\left(\mathbb{Q}_{\ell}\left[\mathfrak{s}_{\text {odd }}\right] \ominus \mathbf{1} \ominus \epsilon_{\mathfrak{s}}\right) \otimes \gamma_{\mathfrak{s}}$ and $\epsilon_{\mathfrak{s}}, \gamma_{\mathfrak{s}}$ are explicit characters (or 0) of Stab $_{I_{K}}(\mathfrak{s})$.

Curve and Clusters
 Frobenius
 Inertia

Let $p=17, \quad a=\sqrt{-p}$,

$$
C: y^{2}=\left(x^{5}-p^{2}\right)(x-2)(x-1)\left(x-1-p^{3}\right)\left(\begin{array}{llllll}
a & 0 & 0 & -a & & \\
0 & 0 & a & -a & & \\
0 & 0 & 0 & -a & & \\
0 & a & 0 & -a & & \\
& & & & 1 & 0 \\
& & & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & & \\
1 & 0 & 0 & -1 & & \\
0 & 1 & 0 & -1 & & \\
0 & 0 & 1 & -1 & & \\
& & & & 1 & * \\
& & & & & 0
\end{array}\right)
$$

Consequences for the Jacobian $\operatorname{Jac}(C) / K$

- Jac (C) has potentially good reduction if and only if all clusters $\mathfrak{s} \neq R$ have odd size.
- The potential toric dimension of $\operatorname{Jac}(C)$ is the number of clusters $\mathfrak{s} \neq R$ of even size that have an odd-size child.
- A formula for the conductor.
- A formula for the local root number if the inertia action on the roots is tame (M. Bisatt).

Classification of semistable curves of genus 2 (23 types)

- Reduction type
- Cluster picture
- Dual graph of special fiber
- Monodromy pairing
- Frobenius action on dual graph
- Local Root number
- Tamagawa Number
- Deficiency

Type	C	n_{v}	c_{v}	deficient	w_{v}
2	- •••0*	0	1	x	1
1_{n}^{+}	$000 \cdot 00_{\frac{1}{2}}^{+}$	1	n	x	-1
1_{n}^{-}	$0000000^{\frac{1}{2}}$	1	n^{*}	x	1
$I_{n, m}^{+,+}$	- (O) $0_{\frac{1}{2}}^{+}$(0) $)_{\frac{m}{2}}^{+}$	2	$n m$	x	1
$I_{n, m}^{+,--}$	$\bullet \bullet(\bullet 0)_{\frac{1}{2}}^{+}(\bullet)_{\frac{m}{2}}^{-}$	2	$n m^{*}$	x	-1
$I_{n, m}^{-,-}$	$0 \bullet 000_{\frac{1}{2}}^{-}\left(00^{\frac{m}{2}}\right.$	2	$n^{*} m^{*}$	x	1
I_{n-n}^{+}	$\bigcirc 00_{\frac{1}{2}}^{+}$	2	n	x	-1
I_{n-n}^{-}		2	n^{*}	x	1
$U_{n, m, r}^{+}$		2	$n m+n r+m r$	x	1
$U_{n, m, r}^{-}$		2	$\left(\frac{n m+n r+m r}{g c d(n, m, r)}\right)^{*} \cdot \operatorname{gcd}(n, m, r)^{*}$	$\begin{cases}\boldsymbol{J} & n, m, r \text { odd } \\ \boldsymbol{X} & \text { else }\end{cases}$	1

Thank you!

