Arithmetic of hyperelliptic curves over local fields

T. Dokchitser, V. Dokchitser, C. Maistret, A. Morgan

University of Bristol/King's College London

September 5, 2017

Setup

 $p \neq 2$ prime;

 K/\mathbb{Q}_p finite extension;

C/K a hyperelliptic curve of genus g,

C:
$$y^2 = f(x) = c \prod_{r \in R} (x - r).$$

For purposes of the presentation assume that

•
$$deg(f) = 2g + 1$$
 or $2g + 2 \neq 1, 2, 4$

•
$$f(x) \in \mathcal{O}_K[x]$$
, $c \in \mathcal{O}_K^{\times}$ and $f(x) \mod \pi_K$ is not of the form $(x-z)^n$, $(x-z_1)^n(x-z_2)^m$, $(x-z_1)(x-z_2)(x-z_3)^n$ or $h(x)^2$.

- 22

Cluster

A *cluster* \mathfrak{s} is a non-empty subset of R cut out by a *p*-adic disc:

$$\mathfrak{s}=R\cap \textit{Disc}(z_{\mathfrak{s}},d)=\{r\in R\mid v(r-z_{\mathfrak{s}})\geq d\}, \qquad ext{ for some } z_{\mathfrak{s}}\in\overline{\mathbb{Q}}_{p}, d\in\mathbb{Q}.$$

Depth

The *depth* of \mathfrak{s} is

$$d_{\mathfrak{s}} = \min_{r,r' \in \mathfrak{s}} v(r-r')$$

child/parent

If $\mathfrak{s}' \subsetneq \mathfrak{s}$ is a maximal subcluster, we call \mathfrak{s}' the *child* of \mathfrak{s} and \mathfrak{s} the *parent* of \mathfrak{s}' .

\mathfrak{s}_{odd}

For a cluster $\mathfrak s$ we write $\mathfrak s_{odd}$ for the set of its children that have odd size.

イロト イポト イヨト イヨト

Theorem(Semistability criterion)

The curve C/K is semistable if and only if the following hold: (i) K(R)/K has ramification degree at most 2, (ii) Every cluster of size ≥ 2 is inertia invariant, (iii) Every cluster \mathfrak{s} of size ≥ 3 has $d_{\mathfrak{s}} \in \mathbb{Z}$ and

$$u_{\mathfrak{s}} = |\mathfrak{s}| d_{\mathfrak{s}} + \sum_{r \notin \mathfrak{s}} v(r_0 - r) \in 2\mathbb{Z} \qquad ext{ for any } r_0 \in \mathfrak{s}.$$

Example
$$(p \neq 3)$$

$$y^{2} = x^{3} - p^{2}$$

$$y^{2} = (x-1)(x-1+p^{2})(x-1-p^{2}) \cdot (x-2) \cdot x(x-p^{3})$$

$$\nu_{R} = 6 \times 0 + 0 \in 2\mathbb{Z}$$

$$\nu_{\mathfrak{s}} = 3 \times 2 + 3 \times 0 \in 2\mathbb{Z}$$

Image: A mathematical states and the states of the states and the states of the sta

Theorem (Special fiber of the minimal regular model \overline{C}_{min})

Suppose that C/K is semistable. Then \overline{C}_{min} is given by

- an (explicit) curve Γ_s for each cluster s of size ≥ 3; genus g_s where |s_{odd}| = 2g_s + 1 or 2g_s + 2; Γ_s is a union of two P¹s if s_{odd} is empty;
- t child of \mathfrak{s} with $|\mathfrak{t}| \geq 3$ odd a chain of \mathbb{P}^1 s from $\Gamma_{\mathfrak{s}}$ to $\Gamma_{\mathfrak{t}}$ of length $\frac{d_{\mathfrak{t}}-d_{\mathfrak{s}}}{2}-1$,
- t child of \mathfrak{s} with $|\mathfrak{t}| \geq 3$ even two chains of \mathbb{P}^1 s from $\Gamma_{\mathfrak{s}}$ to $\Gamma_{\mathfrak{t}}$ of length $d_{\mathfrak{t}} d_{\mathfrak{s}} 1$,
- t child of \mathfrak{s} with $|\mathfrak{t}| = 2$ a chain of \mathbb{P}^1 s from $\Gamma_{\mathfrak{s}}$ to itself of length $2(d_{\mathfrak{t}} d_{\mathfrak{s}}) 1$.

Example:
$$C: y^2 = (x-1)(x-1+p^2)(x-1-p^2) \cdot (x-2) \cdot x(x-p^3)$$

Consequences for semistable C/K

• The homology of the dual graph Υ_C of \overline{C}_{min} is

$$H_1(\Upsilon_C,\mathbb{Z})=\mathbb{Z}^{|A|},$$

where A is the set of clusters $\mathfrak{s} \neq R$ with $|\mathfrak{s}|$ even and $|\mathfrak{s}_{odd}| \geq 1$. Frobenius acts as an (explicit) signed permutation, and there is an explicit formula for the intersection pairing.

- A formula for the Tamagawa number of the Jacobian (A. Betts).
- A criterion for whether $C(K) = \emptyset$ for p sufficiently large.
- A criterion for whether C(K) is deficient.

Theorem: ℓ -adic representation for $\ell \neq p$

As I_K -representations

$$\begin{array}{rcl} H^{1}_{\acute{e}t}(C/\overline{K},\mathbb{Q}_{\ell}) &\cong & H^{1}_{ab} \oplus (H^{1}_{t} \otimes Sp(2)), & \text{with} \\ \\ H^{1}_{ab} = \bigoplus_{\mathfrak{s}: \, |\mathfrak{s}| \geq 3, \, |\mathfrak{s}_{odd}| \geq 1} & \operatorname{Ind}_{\operatorname{Stab}(\mathfrak{s})}^{I_{K}} V_{\mathfrak{s}}, & H^{1}_{t} = \bigoplus_{\mathfrak{s} \neq R: \, |\mathfrak{s}| \, \operatorname{even}, \, |\mathfrak{s}_{odd}| \geq 1} & \operatorname{Ind}_{\operatorname{Stab}(\mathfrak{s})}^{I_{K}} \epsilon_{\mathfrak{s}}, \end{array}$$

where $V_{\mathfrak{s}} = (\mathbb{Q}_{\ell}[\mathfrak{s}_{odd}] \ominus \mathbf{1} \ominus \epsilon_{\mathfrak{s}}) \otimes \gamma_{\mathfrak{s}}$ and $\epsilon_{\mathfrak{s}}, \gamma_{\mathfrak{s}}$ are explicit characters (or 0) of $\mathsf{Stab}_{I_{\mathcal{K}}}(\mathfrak{s})$.

Consequences for the Jacobian Jac(C)/K

- Jac(C) has potentially good reduction if and only if all clusters $\mathfrak{s} \neq R$ have odd size.
- The potential toric dimension of Jac(C) is the number of clusters $\mathfrak{s} \neq R$ of even size that have an odd-size child.
- A formula for the conductor.
- A formula for the local root number if the inertia action on the roots is tame (M. Bisatt).

Classification of semistable curves of genus 2 (23 types)

- Reduction type
- Cluster picture
- Dual graph of special fiber
- Monodromy pairing
- Frobenius action on dual graph
- Local Root number
- Tamagawa Number
- Deficiency

Type	C	n_v	c_v	deficient	w_v
2		0	1	×	1
1_n^+		1	n	×	-1
1_n^-	$\textcircled{\bullet} \bullet \bullet \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled$	1	n^*	×	1
$I_{n,m}^{+,+}$	$\textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} \textcircled{\bullet} $	2	nm	×	1
$I_{n,m}^{+,-}$	$\textcircled{\textcircled{\baselineskip}{\baselineskip}}^+ \textcircled{\textcircled{\baselineskip}{\baselineskip}}^{\frac{m}{2}} \textcircled{\textcircled{\baselineskip}{\baselineskip}}^{\frac{m}{2}} \textcircled{\textcircled{\baselineskip}{\baselineskip}}^{\frac{m}{2}} \textcircled{\baselineskip}$	2	nm^*	×	-1
$I_{n,m}^{-,-}$	$\textcircled{\textcircled{\baselineskip}}{\textcircled{\baselineskip}} \textcircled{\textcircled{\baselineskip}}{\textcircled{\baselineskip}} \overbrace{}{\overset{-}{}} \textcircled{\textcircled{\baselineskip}}{\textcircled{\baselineskip}} \overbrace{}{\overset{-}{}} \textcircled{\textcircled{\baselineskip}}{\textcircled{\baselineskip}} \overbrace{}{\overset{-}{}} \overleftarrow{\textcircled{\baselineskip}} \overbrace{}{\overset{-}{}} \overleftarrow{\textcircled{\baselineskip}} \overbrace{}{\overset{-}{}} \overleftarrow{baselineskip} \overbrace{}{\overset{-}{}} \overleftarrow{baselineskip} $	2	n^*m^*	×	1
I_{n-n}^+	$\textcircled{\textcircled{\baselineskip}{\baselineskip}}^+ \textcircled{\textcircled{\baselineskip}{\baselineskip}}^+ \textcircled{baselineskip}{\baselineskip}}^+ baselineskip} \textcircled{baselineskip}{\baselineskip} \textcircled{baselineskip}{\baselineskip}}^+ baselineskip} baselineskip$	2	n	×	-1
I^{n-n}	$\textcircled{\bullet}\textcircled{\bullet}\textcircled{\bullet}\textcircled{\bullet}\textcircled{\bullet}\textcircled{\bullet}\textcircled{\bullet}\textcircled{\bullet}\overset{-}{\underline{n}}\textcircled{\bullet}\textcircled{\bullet}\overset{+}{\underline{n}}$	2	n^*	×	1
$U^+_{n,m,r}$	$\fbox{\textcircled{0}}_{\underline{n}}\textcircled{0}_{\underline{n}}\textcircled{0}_{\underline{n}}\textcircled{0}_{\underline{n}}\textcircled{0}_{\underline{n}}$	2	nm + nr + mr	×	1
$U^{n,m,r}$		2	$(\frac{nm+nr+mr}{gcd(n,m,r)})^* \cdot gcd(n,m,r)^*$	$\begin{cases} \checkmark & n, m, r \text{ odd} \\ \bigstar & \text{else} \end{cases}$	1

Thank you!

- 22

・ロト ・ 同 ト ・ ヨ ト ・ ヨ